Box-ball systems, RSK tableaux, and the Motzkin numbers

Emily Gunawan, UMass Lowell

based on joint projects with
B. Drucker, E. Garcia, A. Rumbolt, R. Silver (UConn REU '20)
M. Cofie, O. Fugikawa, M. Stewart, D. Zeng (Yale REU '21)
S. Hong, M. Li, R. Okonogi-Neth, M. Sapronov, D. Stevanovich, H.

Weingord (Yale REU '22)

Dartmouth Combinatorics Seminar
Tuesday, October 24, 2023

Solitary waves (solitons)

Scott Russell's first encounter (August 1834)

"I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped.
[The mass of water in the channel] rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed.

I followed it on horseback, ... and after a chase of one or two miles I lost it in the windings of the channel."

Soliton on the Scott Russell Aqueduct on the Union Canal (July 1995)
(ma.hw.ac.uk/solitons/press.html)

Two soliton animation: www.desmos.com/calculator/86loplpajr

Permutations

Let S_{n} denote the set of permutations on the numbers $\{1, \ldots, n\}$.
We will represent permutations in one-line notation, as

$$
w=w(1) w(2) \cdots w(n) \in S_{n}
$$

Example

A permutation in S_{6} in one-line notation: 452361

(Multicolor) box-ball system, Takahashi 1993

A box-ball system is a dynamical system of box-ball configurations.

- At each configuration, balls are labeled by numbers 1 through n in an infinite strip of boxes.
- Each box can fit at most one ball.

Example
A possible box-ball configuration:

Box-ball move (from $t=0$ to $t=1$)

Balls take turns jumping to the first empty box to the right, starting with the smallest-numbered ball.

Box-ball moves $(t=0$ through $t=5)$

$t=0$	4 5	52	3	6	1																
$t=1$		4	5		2	1	3	6													
$t=2$					5					13	36										
$=3$							2	5						3	6						
$t=4$							4			25							3				
= 5								4				2								3	

Solitons and steady state

Definition

A soliton of a box-ball system is an increasing run of balls that moves at a speed equal to its length and is preserved by all future box-ball moves.

Example

The strings 4, 25, and 136 are solitons:
$t=3 \cdots \square$
$t=4$
$t=\square$
$t=5$
$t=\square$

After a finite number of box-ball moves, the system reaches a steady state where:

- each ball belongs to one soliton
- the lengths of the solitons are weakly decreasing from right to left

Question (steady-state time)

The time when a permutation w first reaches steady state is called the steady-state time of w.

- Find a formula to compute the steady-state time of a permutation, without needing to run box-ball moves.

Tableaux (English notation)

Definition

- A tableau is an arrangement of numbers $\{1,2, \ldots, n\}$ into rows whose lengths are weakly decreasing.
- A tableau is standard if its rows and columns are increasing.

Example

Nonstandard Tableau: | 1 | 2 | 3 | |
| :--- | :--- | :--- | :---: |
| 5 | 6 | 7 | |
| | 4 | | |
| | | | |
| | | | |

Soliton decomposition

Definition
To construct soliton decomposition $\mathrm{SD}(w)$ of w, start with the one-line notation of w, and run box-ball moves until we reach a steady state; the 1st row of $\mathrm{SD}(w)$ is the rightmost soliton, the 2nd row of $\mathrm{SD}(w)$ is the next rightmost soliton, and so on.

Example

$t=0$$\cdots$| 4 | 5 | 2 | $\mathbf{3}$ | 6 | $\mathbf{1}$ | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $t=1$ | \cdots | \square | | 4 | 5 | | | 2 | $\mathbf{1}$ | $\mathbf{3}$ | 6 | | | | | | | |

$$
\mathrm{SD}(452361)=\begin{array}{|l|l|l}
\hline 1 & 3 & 6 \\
\hline 2 & 5 & \\
\hline 4 & & \text { with shape }(3,2,1) . .
\end{array}
$$

RSK bijection

The classical Robinson-Schensted-Knuth (RSK) insertion algorithm is a bijection

$$
w \mapsto(\mathrm{P}(w), \mathrm{Q}(w))
$$

from S_{n} onto pairs of size- n standard tableaux of equal shape.
Example
Let $w=452361$. Then

$$
\mathrm{P}(w)=\begin{array}{|l|l|l}
\hline 1 & 3 & 6 \\
\hline 2 & 5 & \\
\hline 4 &
\end{array} \quad \text { and } \quad \mathrm{Q}(w)= .
$$

RSK bijection example

Let $w=452361$.

Insertion and bumping rule for P

- Insert x into the first row of P .
- If x is larger than every element in the first row, add x to the end of the first row.
- If not, replace the smallest number larger than x in row 1 with x. Insert this number into the row below following the same rules.

Recording rule for Q
For Q , insert $1, \ldots, n$ in order so that the shape of Q at each step matches the shape of P .

$\mathrm{Q}(w)$ determines the box-ball dynamics of w

Theorem (2021)
If $\mathrm{Q}(v)=\mathrm{Q}(w)$, then

- v and w first reach steady state at the same time, and
- the soliton decompositions of v and w have the same shape

Example

$$
\begin{aligned}
& v=21435 \text { and } w=31425 \\
& \mathrm{Q}(v)=\mathrm{Q}(w)=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 4 & \\
\hline
\end{array}
\end{aligned}
$$

Both v and w have steady-state time $t=1$

Questions (steady-state time)

Two permutations are said to be Q-equivalent if they have the same Q-tableau.

- Given a Q-tableau, find a formula to compute the steady-state time for all permutations in this Q-tableau equivalence class.
- Find an upper bound for steady-state times of all permutations in S_{n}.

L-shaped soliton decompositions

Theorem (2021)

If a permutation has an L-shaped soliton decomposition
 then its steady-state time is either $t=0$ or $t=1$.

Remark

Such permutations include "noncrossing involutions" and "column words" of standard tableaux.

Example
Both $v=21435$ and $w=31425$ have steady-state time $t=1$.

$$
\begin{aligned}
& \mathrm{SD}(v)=\begin{array}{|l|l|ll}
\hline 1 & 3 & 5 & \\
\hline 4 & & & \left.\mathrm{SD}(w)=\begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 4 & & \\
\hline 3 & & \\
\hline 3 & &
\end{array} \quad \begin{array}{ll}
&
\end{array}\right)
\end{array} \\
& v=(12)(34) \text { and } w=31425 \text { is the column word of } \begin{array}{|l|l|l}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & \\
\hline
\end{array} .
\end{aligned}
$$

Maximum steady-state time

Theorem (UConn 2020)
If $n \geq 5$ and

$$
\mathrm{Q}(w)=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline n & \ldots \\
\hline
\end{array},
$$

then the steady-state time of w is $n-3$.

Conjecture

For $n \geq 4$, the steady-state time of a permutation in S_{n} is at most $n-3$.

A permutation with steady-state time $n-3$

Let $w=452361 \in S_{6}$. Then $\mathrm{Q}(w)=$| 1 | 2 | 5 |
| :--- | :--- | :--- |
| 3 | 4 | |
| 6 | | | and the steady-state time of w is $3=n-3$.

$t=0$	\cdots	4	$\mathbf{5}$	2	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{1}$															
$t=1$	\cdots	\square		4	$\mathbf{5}$		2	2	$\mathbf{1}$	$\mathbf{3}$	6											

Question (soliton decompositions)

- When is the soliton decomposition SD a standard tableau?

When is $\mathrm{SD}(\mathrm{w})$ a standard tableau?

Example

$\mathrm{SD}(452361)=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 | |
| 4 | | $\mathrm{SD}(21435)=$1 3 5
 4
 2 $\mathrm{SD}(31425)=$1 2 5
 4
 3 年 |

Theorem (2020)

Given a permutation w, the following are equivalent:

1. $\mathrm{SD}(w)$ is standard
2. $\mathrm{SD}(w)=\mathrm{P}(w)$
3. the shape of $\mathrm{SD}(w)$ is equal to the shape of $\mathrm{P}(w)$

Definition (good permutations)
We say that a permutation w is good if the tableau $\mathrm{SD}(w)$ is standard.

$\mathrm{Q}(w)$ determines whether w is good

Proposition

Given a standard tableau T, either

$$
\text { All } w \text { such that } \mathrm{Q}(w)=T \text { are good, }
$$

or
All w such that $\mathrm{Q}(w)=T$ are not good.

Definition (good tableaux)
A standard tableau T is good if $T=\mathrm{Q}(w)$ and w is good.

- Question: How many good tableaux are there?

Answer: Good tableaux are new Motzkin objects!

Theorem (2022)
The good standard tableaux, $\left\{\mathrm{Q}(w) \mid w \in S_{n}\right.$ and $\mathrm{SD}(w)$ is standard $\}$, are counted by the Motzkin numbers:

$$
M_{0}=1, \quad M_{n}=M_{n-1}+\sum_{i=0}^{n-2} M_{i} M_{n-2-i}
$$

$$
M_{3}=4
$$

The first few Motzkin numbers are 1, 1, 2, 4, 9, 21, 51, 127, 323, 835.

Question: Characterize permutations with the same soliton decomposition

Permutations connected by Knuth moves to $\mathbf{r}=\mathbf{6 3 2 5 1 4}$ and their soliton decompositions

Knuth Relations

Suppose $v, w \in S_{n}$ and $x<y<z$.

1. v and w differ by a Knuth relation of the first kind $\left(K_{1}\right)$ if

$$
v=x_{1} \ldots y x z \ldots x_{n} \text { and } w=x_{1} \ldots y z x \ldots x_{n} \text { or vice versa }
$$

2. v and w differ by a Knuth relation of the second kind $\left(K_{2}\right)$ if

$$
v=x_{1} \ldots x z y \ldots x_{n} \text { and } w=x_{1} \ldots z x y \ldots x_{n} \text { or vice versa }
$$

In addition, v and w differ by a Knuth relation of both kinds $\left(K_{B}\right)$ if they differ by K_{1} and they differ by K_{2}, that is,

$$
v=x_{1} \ldots y_{1} x z y_{2} \ldots x_{n} \text { and } w=x_{1} \ldots y_{1} z x y_{2} \ldots x_{n} \text { or vice versa }
$$

where $x<y_{1}, y_{2}<z$
Example $3 \mathbf{2 6} 154 \sim^{K_{1}} 362154 \quad 362154 \sim^{K_{B}} 362514$
We say that v and w are Knuth equivalent if they differ by a finite sequence of Knuth relations.

P-tableaux and Knuth moves

Theorem (Knuth, 1970)

- There is a path of Knuth moves from w to the row reading word of $P(w)$.
- Two permutations have the same P tableau iff they are in the same Knuth equivalence class.

Example

1	4
2	5
3	6

Soliton decompositions and Knuth moves

Example

The soliton decomposition is preserved by non- K_{B} Knuth moves, but one K_{B} move changes the soliton decomposition.

Theorem (2020)

Let r denote the row reading word of $\mathrm{P}(w)$.

- If there exists a path of $n o n-K_{B}$ Knuth moves from w to r, then $\mathrm{SD}(w)=\mathrm{P}(w)$. In particular, $\mathrm{SD}(r)=\mathrm{P}(r)$.
- If there exists a path from w to r containing an odd number of K_{B} moves, then $\mathrm{SD}(w) \neq \mathrm{P}(w)$.

Soliton decompositions of the Knuth equivalence class of 362154 :

Further questions

- Characterize good permutations using consecutive permutation patterns. (Note: this is impossible to do using classical permutation patterns.)
- Define and study continuous box-ball system (on the real line with balls labeled by the real numbers)

Y	O	U

Greene's theorem, slide $1 / 3$

Definition (longest k-increasing subsequences)

A subsequence σ of w is called k-increasing if, as a set, it can be written as a disjoint union

$$
\sigma=\sigma_{1} \sqcup \sigma_{2} \sqcup \cdots \sqcup \sigma_{k}
$$

where each σ_{i} is an increasing subsequence of w. Let $\mathrm{i}_{k}:=\mathrm{i}_{k}(w)$ denote the length of a longest k-increasing subsequence of w.

Example (Let $w=5623714$.)

- The longest 1-increasing subsequences are 567, 237, and 234.
- The longest 2 -increasing subsequence is given by $562374=567 \sqcup 234$.
- A longest 3-increasing subsequence (among others) is given by $5623714=56 \sqcup 237 \sqcup 14$.
- Thus, $\mathrm{i}_{1}=3, \quad \mathrm{i}_{2}=6, \quad$ and $\quad \mathrm{i}_{k}=7$ if $k \geq 3$.

Greene's theorem, slide $2 / 3$

Definition (longest k-decreasing subsequences)
Similarly, a subsequence σ of w is called k-decreasing if, as a set, it can be written as a disjoint union

$$
\sigma=\sigma_{1} \sqcup \sigma_{2} \sqcup \cdots \sqcup \sigma_{k}
$$

where each σ_{i} is an decreasing subsequence of w. Let $\mathrm{d}_{k}:=\mathrm{d}_{k}(w)$ denote the length of a longest k-decreasing subsequence of w.

Example (Let $w=5623714$.)

- The longest 1-decreasing subsequences are 521, 621, 531, and 631.
- A longest 2-decreasing subsequence (among others) is given by $52714=521 \sqcup 74$.
- A longest 3-decreasing subsequence (among others) is given by $5623714=52 \sqcup 631 \sqcup 74$.
\rightarrow Thus, $\mathrm{d}_{1}=3, \quad \mathrm{~d}_{2}=5, \quad$ and $\quad \mathrm{d}_{k}=7$ if $k \geq 3$.

Greene's theorem, slide $3 / 3$

Theorem (Greene, 1974)

Suppose $w \in S_{n}$. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ denote the $R S$ partition of w, that is, let $\lambda=\operatorname{sh} P(w)$. Let $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)$ denote the conjugate of λ. Then, for any k,

$$
\begin{aligned}
\mathrm{i}_{k}(w) & =\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k} \\
\mathrm{~d}_{k}(w) & =\mu_{1}+\mu_{2}+\ldots+\mu_{k}
\end{aligned}
$$

Example
By Greene's theorem, the RS partition is equal to $\lambda=\left(\mathrm{i}_{1}, \mathrm{i}_{2}-\mathrm{i}_{1}, \mathrm{i}_{3}-\mathrm{i}_{2}\right)=(3,3,1)$. We can verify this by computing the RS tableaux

$$
P(w)=\begin{array}{|l|l|l}
\hline 1 & 3 & 4 \\
\hline 2 & 6 & 7, \\
\hline 5 & & \\
\hline
\end{array},
$$

$$
Q(w)=\begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & 7 \\
\hline 6 & & \\
\hline
\end{array} .
$$

A localized version of Greene's theorem, slide $1 / 3$

Definition (A localized version of longest k-increasing subsequences)

Let $\mathrm{i}(u):=$ the length of a longest increasing subsequence of u.
For $w \in S_{n}$ and $k \geq 1$, let $\mathrm{I}_{k}(w)=\max _{w=u_{1}|\cdots| u_{k}} \sum_{j=1}^{k} \mathrm{i}\left(u_{j}\right)$, where the
maximum is taken over ways of writing w as a concatenation $u_{1}|\cdots| u_{k}$ of consecutive subsequences.

Example

Let $w=5623714$. For short, we write $\mathrm{I}_{k}:=\mathrm{I}_{k}(w)$. Then
$\mathrm{I}_{1}=\mathrm{i}(w)=3$ (since the longest increasing subsequences are 567, 237, 234),
$\mathrm{I}_{2}=5$ (witnessed by $56 \mid 23714$ or $56237 \mid 14$),
$\mathrm{I}_{3}=7$ (witnessed uniquely by $56|237| 14$), and
$\mathrm{I}_{k}=7$ for all $k \geq 3$.

A localized version of Greene's theorem, slide $2 / 3$

Definition (A localized version of longest k-decreasing subsequences)
Let $\mathrm{D}(u):=1+\mid\{$ descents of $u\} \mid$.
For $w \in S_{n}$ and $k \geq 1$, let $\mathrm{D}_{k}(w)=\max _{w=u_{1} \sqcup \cdots \sqcup u_{k}} \sum_{j=1}^{k} \mathrm{D}\left(u_{j}\right)$, where the maximum is taken over ways to write w as the union of disjoint subsequences u_{j} of w.

Example
Let $w=5623714$. For short, we write $\mathrm{D}_{k}:=\mathrm{D}_{k}(w)$. Then
$\mathrm{D}_{1}=\mathrm{D}(w)=1+\mid$ descents of $5623714|=1+|\{2,5\}|=3$,
$\mathrm{D}_{2}=6$ (take subsequences 531 and 6274, among other partitions),
$\mathrm{D}_{3}=7$ (take subsequences 52,631 , and 74 , among other partitions), and
$\mathrm{D}_{k}=7$ for all $k \geq 3$.

A localized version of Greene's theorem, slide $3 / 3$

Theorem (Lewis-Lyu-Pylyavskyy-Sen 2019)
Suppose $w \in S_{n}$. Let $\Lambda=\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots\right)$ denote $\operatorname{sh} \operatorname{SD}(w)$. Let $M=\left(M_{1}, M_{2}, M_{3}, \ldots\right)$ denote the conjugate of Λ. Then, for any k,

$$
\begin{aligned}
\mathrm{I}_{k}(w) & =\Lambda_{1}+\Lambda_{2}+\ldots+\Lambda_{k} \\
\mathrm{D}_{k}(w) & =M_{1}+M_{2}+\ldots+M_{k} .
\end{aligned}
$$

Example

Let $w=5623714$. By the above theorem, $\operatorname{sh} \mathrm{SD}(w)=\left(\mathrm{I}_{1}, \mathrm{I}_{2}-\mathrm{I}_{1}, \mathrm{I}_{3}-\mathrm{I}_{2}\right)=(3,2,2)$. We can verify this by computing the soliton decomposition $\mathrm{SD}(w)$, which turns out to be the (non-standard) tableau

\[

\]

Note: $\operatorname{sh} \operatorname{SD}(w)=(3,2,2)$ is smaller than $\operatorname{sh} P(w)=(3,3,1)$ in the dominance order.

Examples: permutations with L-shaped SD
A permutation with L-shaped SD which is not a column reading word:
$w=3217654=(13)(47)(56)$ is a noncrossing involution.

$\mathrm{P}(w)=\mathrm{Q}(w)=$| 1 | 4 |
| :--- | :--- |
| 2 | 5 |
| 3 | 6 |
| 7 | |

$$
\mathrm{SD}(w)=\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 5 & \\
\hline 6 & \\
\hline 7 & \\
\hline 2 & \\
\hline 3 & \\
\hline
\end{array}
$$

An involution which is neither noncrossing nor a column reading word:
$v=5274163=(15)(37)$ has a crossing.

$\mathrm{P}(v)=\mathrm{Q}(v)=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 4 | |
| 5 | 7 | |

and

$\mathrm{SD}(v)=$| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 4 | | |
| 2 | | |
| | | |
| | | |

Permutations connected by K_{B} moves \& have the same SD

Two permutations with the same SD which are connected by K_{B} moves:

$$
\begin{aligned}
& r=35124 \quad \mathrm{SD}(r)=\begin{array}{ll|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & 5 & \\
\hline
\end{array}
\end{aligned}
$$

