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Solitary waves (solitons)

Scott Russell’s first encounter (August 1834)

“I was observing the motion of a boat which
was rapidly drawn along a narrow channel by a
pair of horses, when the boat suddenly stopped.

[The mass of water in the channel] rolled
forward with great velocity, assuming the form
of a large solitary elevation, a rounded, smooth
and well-defined heap of water, which continued
its course along the channel apparently without
change of form or diminution of speed.

I followed it on horseback, ... and after a chase
of one or two miles I lost it in the windings of
the channel.”

Soliton on the Scott
Russell Aqueduct on
the Union Canal
(July 1995)

(ma.hw.ac.uk/solitons/press.html)

Two soliton animation: www.desmos.com/calculator/86loplpajr
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Permutations

Let Sn denote the set of permutations on the numbers {1, . . . , n}.

We will represent permutations in one-line notation, as

w = w(1)w(2) · · · w(n) ∈ Sn.

Example
A permutation in S6 in one-line notation: 452361



(Multicolor) box-ball system, Takahashi 1993

A box-ball system is a dynamical system of box-ball
configurations.
▶ At each configuration, balls are labeled by numbers 1

through n in an infinite strip of boxes.
▶ Each box can fit at most one ball.

Example
A possible box-ball configuration:

· · · 4 5 2 3 6 1 · · ·
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Box-ball move (from t = 0 to t = 1)

Balls take turns jumping to the first empty box to the right,
starting with the smallest-numbered ball.

t = 0 · · · 4 5 2 3 6 1 · · ·

· · · 4 5 2 3 6 1 · · ·

· · · 4 5 3 6 2 1 · · ·

· · · 4 5 6 2 1 3 · · ·

· · · 5 4 6 2 1 3 · · ·

· · · 4 5 6 2 1 3 · · ·

t = 1 · · · 4 5 2 1 3 6 · · ·
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Box-ball moves (t = 0 through t = 5)

t = 0 · · · 4 5 2 3 6 1 · · ·

t = 1 · · · 4 5 2 1 3 6 · · ·

t = 2 · · · 4 5 2 1 3 6 · · ·

t = 3 · · · 4 2 5 1 3 6 · · ·

t = 4 · · · 4 2 5 1 3 6 · · ·

t = 5 · · · 4 2 5 1 3 6 · · ·
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Solitons and steady state

Definition
A soliton of a box-ball system is an increasing run of balls that moves
at a speed equal to its length and is preserved by all future box-ball
moves.

Example
The strings 4, 25, and 136 are solitons:

t = 3 · · · 4 2 5 1 3 6 · · ·

t = 4 · · · 4 2 5 1 3 6 · · ·

t = 5 · · · 4 2 5 1 3 6 · · ·

After a finite number of box-ball moves, the system reaches a steady
state where:

▶ each ball belongs to one soliton

▶ the lengths of the solitons are weakly decreasing from right to left
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Question (steady-state time)

The time when a permutation w first reaches steady state is
called the steady-state time of w.

▶ Find a formula to compute the steady-state time of a
permutation, without needing to run box-ball moves.
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Tableaux (English notation)

Definition
▶ A tableau is an arrangement of numbers {1, 2, ..., n} into

rows whose lengths are weakly decreasing.
▶ A tableau is standard if its rows and columns are increasing.

Example

Standard Tableaux:
1 2 4

3 5

6 7

1 3 6

2 5

4

1 3 4

2 7

5 8

6

Nonstandard Tableau:
1 2 3

5 6 7

4
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Soliton decomposition
Definition
To construct soliton decomposition SD(w) of w, start with the
one-line notation of w, and run box-ball moves until we reach a
steady state; the 1st row of SD(w) is the rightmost soliton, the
2nd row of SD(w) is the next rightmost soliton, and so on.

Example

t = 0 · · · 4 5 2 3 6 1 · · ·
t = 1 · · · 4 5 2 1 3 6 · · ·
t = 2 · · · 4 5 2 1 3 6 · · ·
t = 3 · · · 4 2 5 1 3 6 · · ·
t = 4 · · · 4 2 5 1 3 6 · · ·

SD(452361) =
1 3 6
2 5
4

with shape (3, 2, 1).
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RSK bijection

The classical Robinson–Schensted–Knuth (RSK) insertion
algorithm is a bijection

w 7→ (P(w),Q(w))

from Sn onto pairs of size-n standard tableaux of equal shape.

Example
Let w = 452361. Then

P(w) =
1 3 6

2 5

4

and Q(w) =

1 2 5

3 4

6

.
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RSK bijection example
Let w = 452361.

P : 4 4 5
2 5
4

2 3
4 5

2 3 6
4 5

1 3 6
2 5
4

P(w) =
1 3 6
2 5
4

Q : 1 1 2
1 2
3

1 2
3 4

1 2 5
3 4

1 2 5
3 4
6

Q(w) =
1 2 5
3 4
6

Insertion and bumping rule for P
▶ Insert x into the first row of P.

▶ If x is larger than every element in the first row, add x to the end
of the first row.

▶ If not, replace the smallest number larger than x in row 1 with x.
Insert this number into the row below following the same rules.

Recording rule for Q
For Q, insert 1, . . . , n in order so that the shape of Q at each step
matches the shape of P.
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Q(w) determines the box-ball dynamics of w

Theorem (2021)
If Q(v) = Q(w), then
▶ v and w first reach steady state at the same time, and
▶ the soliton decompositions of v and w have the same shape

Example v = 21435 and w = 31425

Q(v) = Q(w) =
1 3 5
2 4

Both v and w have steady-state time t = 1

SD(v) =
1 3 5
4
2

SD(w) =
1 2 5
4
3
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Questions (steady-state time)

Two permutations are said to be Q-equivalent if they have
the same Q-tableau.

▶ Given a Q-tableau, find a formula to compute the
steady-state time for all permutations in this Q-tableau
equivalence class.

▶ Find an upper bound for steady-state times of all
permutations in Sn.
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L-shaped soliton decompositions
Theorem (2021)

If a permutation has an L-shaped soliton decomposition

1 . . .

...

,

then its steady-state time is either t = 0 or t = 1.

Remark
Such permutations include “noncrossing involutions” and “column
words” of standard tableaux.

Example

Both v = 21435 and w = 31425 have steady-state time t = 1.

SD(v) =
1 3 5
4
2

SD(w) =
1 2 5
4
3

v = (12)(34) and w = 31425 is the column word of 1 2 5
3 4

.
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Maximum steady-state time

Theorem (UConn 2020)
If n ≥ 5 and

Q(w) =

1 2 . . . n− 2 n− 1

3 4

n

,

then the steady-state time of w is n− 3.

Conjecture

For n ≥ 4, the steady-state time of a permutation in Sn is at
most n− 3.
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A permutation with steady-state time n− 3

Let w = 452361 ∈ S6. Then Q(w) =
1 2 5
3 4
6

and the steady-state time

of w is 3 = n− 3.

t = 0 · · · 4 5 2 3 6 1 · · ·

t = 1 · · · 4 5 2 1 3 6 · · ·

t = 2 · · · 4 5 2 1 3 6 · · ·

t = 3 · · · 4 2 5 1 3 6 · · ·

t = 4 · · · 4 2 5 1 3 6 · · ·

t = 5 · · · 4 2 5 1 3 6 · · ·
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Question (soliton decompositions)

▶ When is the soliton decomposition SD a standard
tableau?
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When is SD(w) a standard tableau?

Example

SD(452361) =
1 3 6
2 5
4

SD(21435) =
1 3 5
4
2

SD(31425) =
1 2 5
4
3

Theorem (2020)
Given a permutation w, the following are equivalent:

1. SD(w) is standard

2. SD(w) = P(w)

3. the shape of SD(w) is equal to the shape of P(w)

Definition (good permutations)
We say that a permutation w is good if the tableau SD(w) is standard.
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Q(w) determines whether w is good

Proposition
Given a standard tableau T , either

All w such that Q(w) = T are good,

or

All w such that Q(w) = T are not good.

Definition (good tableaux)
A standard tableau T is good if T = Q(w) and w is good.

▶ Question: How many good tableaux are there?
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Answer: Good tableaux are new Motzkin objects!

Theorem (2022)
The good standard tableaux, {Q(w) | w ∈ Sn and SD(w) is standard},
are counted by the Motzkin numbers:

M0 = 1, Mn = Mn−1 +

n−2∑
i=0

Mi Mn−2−i

M3 = 4

The first few Motzkin numbers are 1, 1, 2, 4, 9, 21, 51, 127, 323, 835.
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Question: Characterize permutations with the same
soliton decomposition

326541

1 4
2
5
6
3

362541
1 4
2 5
3
6

365241
1 4
2 5
3
6

365214
1 4
2 5
3
6

635214
1 4
2 5
3
6

635241
1 4
2 5
3
6

632541

1 4
2
5
3
6

r = 632514
1 4
2 5
3
6

632154

1 4
5
2
3
6

KB

K2
K1 K2

K1K2

K1

KB

KB

Permutations connected by Knuth moves to r = 632514 and
their soliton decompositions
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Knuth Relations
Suppose v, w ∈ Sn and x < y < z.

1. v and w differ by a Knuth relation of the first kind (K1) if

v = x1 . . . yxz . . . xn and w = x1 . . . yzx . . . xn or vice versa

2. v and w differ by a Knuth relation of the second kind (K2) if

v = x1 . . . xzy . . . xn and w = x1 . . . zxy . . . xn or vice versa

In addition, v and w differ by a Knuth relation of both kinds (KB) if
they differ by K1 and they differ by K2, that is,

v = x1 . . . y1xzy2 . . . xn and w = x1 . . . y1zxy2 . . . xn or vice versa

where x < y1, y2 < z

Example 326154 ∼K1 362154 362154 ∼KB 362514

We say that v and w are Knuth equivalent if they differ by a finite
sequence of Knuth relations.
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P -tableaux and Knuth moves
Theorem (Knuth, 1970)

▶ There is a path of Knuth moves from w to the row reading word of
P(w).

▶ Two permutations have the same P tableau iff they are in the
same Knuth equivalence class.

Example
The Knuth equivalence class of the row word r = 362514 of

1 4
2 5
3 6

:

r = 362514

362154 326514

326154

321654

KB KB

K1, not KB K2, not KB

KB
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Soliton decompositions and Knuth moves

The soliton decomposition is preserved
by non-KB Knuth moves, but one KB

move changes the soliton
decomposition.

Theorem (2020)
Let r denote the row reading word of
P(w).

▶ If there exists a path of non-KB

Knuth moves from w to r, then
SD(w) = P(w). In particular,
SD(r) = P(r).

▶ If there exists a path from w to r
containing an odd number of KB

moves, then SD(w) ̸= P(w).

Example
Soliton decompositions of the
Knuth equivalence class of 362154:

r = 362514

1 4
2 5
3 6

362154

1 4
2 5
6
3

326514

1 4
2 5
6
3

3261541 4
2 5
6
3

321654

1 4
5
6
2
3

KB KB

K1, not KB K2, not KB

KB
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Further questions

▶ Characterize good permutations using consecutive
permutation patterns. (Note: this is impossible to do using
classical permutation patterns.)

▶ Define and study continuous box-ball system (on the real
line with balls labeled by the real numbers)
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Greene’s theorem, slide 1/3
Definition (longest k-increasing subsequences)
A subsequence σ of w is called k-increasing if, as a set, it can be
written as a disjoint union

σ = σ1 ⊔ σ2 ⊔ · · · ⊔ σk

where each σi is an increasing subsequence of w. Let ik := ik(w) denote
the length of a longest k-increasing subsequence of w.

Example (Let w = 5623714.)

▶ The longest 1-increasing subsequences are
567, 237, and 234.

▶ The longest 2-increasing subsequence is given by
562374 = 567 ⊔ 234.

▶ A longest 3-increasing subsequence (among others) is given by
5623714 = 56 ⊔ 237 ⊔ 14.

▶ Thus, i1 = 3, i2 = 6, and ik = 7 if k ≥ 3.



Greene’s theorem, slide 2/3
Definition (longest k-decreasing subsequences)
Similarly, a subsequence σ of w is called k-decreasing if, as a set, it can
be written as a disjoint union

σ = σ1 ⊔ σ2 ⊔ · · · ⊔ σk

where each σi is an decreasing subsequence of w. Let dk := dk(w)
denote the length of a longest k-decreasing subsequence of w.

Example (Let w = 5623714.)

▶ The longest 1-decreasing subsequences are
521, 621, 531, and 631.

▶ A longest 2-decreasing subsequence (among others) is given by
52714 = 521 ⊔ 74.

▶ A longest 3-decreasing subsequence (among others) is given by
5623714 = 52 ⊔ 631 ⊔ 74.

▶ Thus, d1 = 3, d2 = 5, and dk = 7 if k ≥ 3.



Greene’s theorem, slide 3/3
Theorem (Greene, 1974)
Suppose w ∈ Sn. Let λ = (λ1, λ2, λ3, . . . ) denote the RS partition
of w, that is, let λ = shP (w). Let µ = (µ1, µ2, µ3, . . . ) denote the
conjugate of λ. Then, for any k,

ik(w) = λ1 + λ2 + . . .+ λk,

dk(w) = µ1 + µ2 + . . .+ µk.

Example
By Greene’s theorem, the RS partition is equal to
λ = (i1, i2− i1, i3− i2) = (3, 3, 1). We can verify this by
computing the RS tableaux

P (w) =
1 3 4
2 6 7
5

, Q(w) =
1 2 5
3 4 7
6

.



A localized version of Greene’s theorem, slide 1/3

Definition (A localized version of longest k-increasing
subsequences)
Let i(u) := the length of a longest increasing subsequence of u.

For w ∈ Sn and k ≥ 1, let Ik(w) = max
w=u1|···|uk

k∑
j=1

i(uj), where the

maximum is taken over ways of writing w as a concatenation
u1 | · · · | uk of consecutive subsequences.

Example
Let w = 5623714. For short, we write Ik := Ik(w). Then

I1 = i(w) = 3 (since the longest increasing subsequences are 567, 237, 234),
I2 = 5 (witnessed by 56|23714 or 56237|14),
I3 = 7 (witnessed uniquely by 56|237|14), and
Ik = 7 for all k ≥ 3.



A localized version of Greene’s theorem, slide 2/3

Definition (A localized version of longest k-decreasing
subsequences)
Let D(u) := 1 + |{descents of u}|.

For w ∈ Sn and k ≥ 1, let Dk(w) = max
w=u1⊔···⊔uk

k∑
j=1

D(uj), where the

maximum is taken over ways to write w as the union of disjoint
subsequences uj of w.

Example
Let w = 5623714. For short, we write Dk := Dk(w). Then

D1 = D(w) = 1 + |descents of 5623714| = 1 + |{2, 5}| = 3,

D2 = 6 (take subsequences 531 and 6274, among other partitions),
D3 = 7 (take subsequences 52, 631, and 74, among other partitions), and
Dk = 7 for all k ≥ 3.



A localized version of Greene’s theorem, slide 3/3

Theorem (Lewis–Lyu–Pylyavskyy–Sen 2019)
Suppose w ∈ Sn. Let Λ = (Λ1,Λ2,Λ3, . . . ) denote sh SD(w). Let
M = (M1,M2,M3, . . . ) denote the conjugate of Λ. Then, for any k,

Ik(w) = Λ1 + Λ2 + . . .+ Λk,

Dk(w) = M1 +M2 + . . .+Mk.
Example
Let w = 5623714. By the above theorem,
sh SD(w) = (I1, I2 − I1, I3 − I2) = (3, 2, 2). We can verify this by
computing the soliton decomposition SD(w), which turns out to be the
(non-standard) tableau

1 3 4
2 7
5 6

.

Note: sh SD(w) = (3, 2, 2) is smaller than shP (w) = (3, 3, 1) in the
dominance order.



Examples: permutations with L-shaped SD
A permutation with L-shaped SD which is not a column
reading word:
w = 3217654 = (13)(47)(56) is a noncrossing involution.

P(w) = Q(w) =

1 4
2 5
3 6
7

and SD(w) =

1 4
5
6
7
2
3

An involution which is neither noncrossing nor a column
reading word:
v = 5274163 = (15)(37) has a crossing.

P(v) = Q(v) =
1 3 6
2 4
5 7

and SD(v) =

1 3 6
4
2
7
5



Permutations connected by KB moves & have the same SD
Two permutations with the same SD which are connected by KB

moves:

r = 35124 SD(r) = 1 2 4
3 5

31524SD =
1 2 4
5
3

31254SD =
1 2 4
5
3

13254SD =
1 2 4
5
3

w = 13524 SD(w) = 1 2 4
3 5

KB

K2, not K1

K2, not K1

KB


